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Abstract  

STEM (Science, Technology, Engineering and Mathematics) enrolments in higher education are 

declining while the STEM gender gap of female underrepresentation seems to widen. The 

present study addresses both issues by exploring how the fit between a student’s vocational 

interests and the STEM field contributes to a (non-) STEM study choice. Data was collected in 

the unique setting of an open access and low cost higher education system, which allowed for 

study of vocational interests without unwanted influence of admission conditions. Specifically, 

we assessed the interest fit of N = 9,162 first-year Belgian university students with (1) the STEM 

field (i.e., STEM fit) and (2) their specific program of choice (i.e., program fit). Results indicated 

STEM fit indeed predicted STEM study choice, with a stronger effect in female students. Results 

also indicated that female students showed a better specific program fit. In order to promote 

student STEM enrolment and address the gender gap, the present study therefore advocates a 

gender-specific approach to attract more students with appropriate interest profiles.  

Keywords: PE interest fit; person-environment interest fit; STEM; STEM fit; STEM gender gap; 

STEM profile; STEM study choice  
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Introduction 

   STEM (Science, Technology, Engineering and Mathematics ) study choice has become 

an important topic in vocational and educational literature as study choice is the primary gateway 

to the STEM work field (UNESCO, 2016). Reports have shown that keeping this STEM work 

field well-staffed can be crucial to the economy of industrialized countries (World Economic 

Forum, 2016). However, this primary STEM gateway of higher education enrolment faces two 

major challenges. First, literature reports a decline in the number of students choosing a STEM 

program in higher education (Ainley et al., 2008; Perera & McIlveen, 2018). Second, literature 

also reports a widening gender gap in enrolments, indicating a still growing female 

underrepresentation (Stoet & Geary, 2018; Xu, 2008). For instance, according to numbers from 

the United Nations Educational Scientific and Cultural Organization (UNESCO), female 

students only represent 35% of all students enrolled in higher education STEM programs and 

female researchers only account for 28% of all researchers active in the field (UNESCO, 2016). 

  One approach to addressing these issues consists in determining how a student that 

chooses a STEM program differs from a student that chooses a non-STEM program. Comparing 

both options can render more information on which (future) students would have a suited profile 

for a career in the STEM field. Such information can then be used in future studies or 

interventions on how to guide these students towards the STEM field. In order to facilitate such a 

distinction, vocational interests are a valid option, as interests are arguably considered the 

strongest predictors of study choice (Stoll et al., 2017). For instance, a good fit between a 

student’s vocational interests and a student’s study environment has predictive validity towards 

study choice, persistence and results (Burns, 2014; Donnay, 1997; Nye et al., 2012; Rounds & 

Su, 2014; Schelfhout et al., 2021; Schelfhout et al., 2019). However, literature does not yet report 
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on the effect of this person-environment interest fit (PE interest fit) towards STEM study choice. 

Moreover, gender differences regarding this PE interest fit also have yet to be investigated. Such 

gender differences could prove important as literature shows that known predictors of STEM 

study choice do interact with gender (Yazilitas et al., 2013). For instance, a STEM study choice 

in female students is less determined by performing well in specific STEM preparation courses 

like mathematics, as women evaluate their cognitive capabilities much more modestly compared 

to men (Nix et al., 2015).  

  The present study has two research goals. First, we want to investigate how PE interest fit 

contributes to the prediction of STEM study choice by comparing a STEM choice versus a non-

STEM choice. Particular consideration is hereby given to interaction effects with gender. 

Second, we want to investigate whether and to which extent male and female students differ 

regarding PE interest fit with their specific STEM program. With the answers to our questions, 

STEM study orientation can act upon this knowledge to increase (female) student STEM 

enrolments by focusing their efforts on recruiting students with appropriate profiles through 

means of policy and counseling.    

The RIASEC Model of Vocational Interests 

  Today, the RIASEC model by Holland (1997) is still one of the most influential models 

in vocational literature, describing the interest profiles of students and their study programs 

through six RIASEC dimensions (realistic, investigative, artistic, social, enterprising and 

conventional). This model also displays an empirically verified circular structure: the dimensions 

are arranged in clockwise RIASEC order (Tracey & Rounds, 1995). To obtain an individual 

student’s RIASEC profile, the literature describes a vast number of questionnaires, all rendering 

scores on the six dimensions (for an overview, see Nauta, 2010). For the present study, we used 
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SIMON-I, a validated instrument specifically targeting the transition from high school to higher 

education (Fonteyne, Wille et al., 2017). To obtain an environment program profile, student 

profiles can function as representatives or incumbents for their program of choice. As an 

example for the present study, we thus established a RIASEC profile for each specific study 

program by averaging RIASEC scores of successful and persistent students enrolled in that 

specific program (Allen & Robbins, 2010). As the present study also focuses on STEM as a 

separate educational environment, we additionally established a RIASEC interest profile for the 

entire STEM field by averaging the RIASEC scores of all study programs classified as STEM. 

This operationalization of the STEM field is empirically verified in the present study’s Method 

and Materials section.  

Person-Environment Interest Fit 

  As the RIASEC model allows for commensurate measurement (i.e., measurement on the 

same scales) of both individual and program profiles (Holland, 1997), we can also determine 

how well an individual (i.e., a student) fits an environment (i.e., a study program or the STEM 

field). This concept of PE interest fit is well-established in literature (Nye et al., 2012), and 

operationalized using different measures with different properties. For an overview and 

discussion, we refer to Nye and colleagues (2018). As an example, Euclidean distance 

operationalizes PE interest fit in terms of the distance between the person and the environment 

profile in two-dimensional space. Specifically, this approach relies on the Prediger dimensions of 

People / Things (P/T) and Data / Ideas (D/I) to define the person and environment profiles 

(Prediger, 1982; Prediger, 2000). In practice, coordinates are determined using the following 

formulae,  
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  P / T  = 2𝑅 + 𝐼 − 𝐴 − 2𝑆 − 𝐸 + 𝐶           (1) 

 

D / I = 1.73𝐸 + 1.73𝐶 − 1.73𝐼 − 1.73𝐴                     (2) 

 

and Euclidean distance (ED) is calculated as 

 

  𝐸𝐷 = √(𝑠𝑡𝑢𝑑𝑒𝑛𝑡 𝑃/𝑇  − study program 𝑃/𝑇 )2 + (𝑠𝑡𝑢𝑑𝑒𝑛𝑡 𝐷/𝐼 − study program 𝐷/𝐼)2       (3) 

 

with P/T, D/I and ED as a function of the scores on the RIASEC dimensions (Wille et al., 2014).  

  Although other PE interest fit metrics are also available, we have selected Euclidean 

distance as measure of PE interest fit for the present study as the measure’s properties facilitate 

our research goals. First, evidence has shown that a low Euclidean distance indeed predicts study 

degree attainment (end of the third year of higher education) from as early as the first year of 

higher education (Tracey et al., 2012). Degree attainment also forms the primary gateway 

towards the STEM work field (UNESCO, 2016). As our data were gathered in a student 

population making the transition from secondary education to the first year of higher education, 

Euclidean distance is an appropriate measure to investigate the effect of PE interest fit on a  

(non-) STEM choice.  

  And second, Euclidean distance also allows to locate not only students, but also study 

programs in two-dimensional Euclidean space. For the present study, locating programs allows 

us to empirically verify the difference between STEM programs and non – STEM programs as a 

function of their position in Euclidean interest space. This empirically verified distinction 
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between a STEM choice and a non – STEM choice adds to literature as previous studies 

primarily focused on differences within the STEM field to characterize STEM profiles. Indeed, 

what was considered a typical STEM profile was determined by comparing that profile to the 

STEM field exclusively (Su & Rounds, 2015; Su et al., 2009). For instance, Perera and McIlveen 

(2018) reported that students with specific latent interest profiles (i.e., high realistic dominant 

and conventional dominant) have a higher chance of making a STEM choice in higher education. 

Perera and McIlveen (2018) operationalized their study by describing typical latent profiles that 

are present in the STEM field, without reporting how vocational interests directly contribute to 

making a STEM choice over a non-STEM one. In contrast, the present study actively profiles 

how a STEM student differs from a non – STEM student in terms of individual RIASEC scores 

and PE interest fit by regressing STEM study choice on vocational interest variables. For these 

purposes, we consider two applications of PE interest fit to address the contribution of interest fit 

to a STEM study choice over a non - STEM study choice: STEM fit and program fit. STEM fit 

measures the Euclidean distance between a student’s RIASEC profile and the broader STEM 

field profile. This index thus allows to investigate how the interest profile of a student choosing a 

STEM program differs from the profile of a student choosing a non-STEM program. In contrast, 

program fit measures the Euclidean distance between a student’s RIASEC profile and the 

RIASEC profile of the specific study program that was chosen, which can be either within or 

outside of the broader STEM field. This program fit is used to compare PE interest fit between 

male and female students in specific programs. 

Vocational Interests and STEM Study Choice 

  Meta-analytic research by Low and colleagues (2005) has shown that vocational interests 

are quite stable from early adolescence (i.e., about age 12) to middle adulthood (i.e., about age 

40). This early stability in the lifespan makes vocational interests a good candidate for (study) 

career orientation as one’s interests as a student have a good chance to persist into adulthood. 

Indeed, literature shows vocational interests can predict up to 70% of the variance in study 

choice across students (Burns, 2014; Donnay, 1997; Päßler & Hell, 2012; Nye et al., 2012; 
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Rounds & Su, 2014; Stoll et al., 2017). For instance, high realistic and investigative interests in 

incoming students are predictive of becoming a civil engineer (Fonteyne, Wille et al., 2017). 

Apart from individual student vocational interests, study environment characteristics regarding 

vocational interests are arguably equally important in the process of study choice. Specifically, 

these characteristics codetermine the level of PE interest fit between student and study program, 

contributing to study choice above and beyond the effects of individual student vocational 

interests. To give one example, Schelfhout and colleagues (2019) found an average similarity of 

about 49% (r = .70) between the RIASEC profile of an individual student and the RIASEC 

profile of the chosen study program (based on the RIASEC profiles of students who successfully 

completed that program). In other words, a higher level of PE interest fit between the RIASEC 

profiles of students and their study programs enlarges the chance that the student will choose the 

program eventually. 

  Analogous to the previous example, the present study uses the RIASEC profiles of 

successful STEM students to determine the RIASEC profile of STEM study programs and the 

broader STEM field as a whole. We thus expect that students making a STEM study choice will 

have similar RIASEC profiles that have a better fit with the STEM field compared to the 

RIASEC profiles of students who do not make a STEM study choice. This similarity assumption 

also seems plausible as students making a STEM study choice should have a profound and stable 

interest in science, technology, engineering and mathematics, similar to graduated students that 

have finished their STEM education and are ready to enter the STEM work field. We thus 

hypothesize that a student’s PE interest fit with the STEM field should have predictive value 

towards a STEM study choice,   

                        Hypothesis 1: STEM fit predicts STEM study choice. 

  Moreover, literature already shows that predictors of STEM study choice often interact 

with gender (Germeijs & Verschueren, 2006; Nix et al., 2015; Yazilitas et al., 2013). As such, 

the present study also gives particular consideration to the interaction effect between gender and 
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PE interest fit on STEM study choice, as such an effect can shed new light on existing issues like 

the female underrepresentation in the STEM field (Xu, 2008) and a decline in enrolments 

(Ainley et al., 2008). To investigate this interaction effect, we consider the leveled framework by 

Yazilitas and colleagues (2013). This framework reviews the relevant literature regarding 

STEM1 study choice using an institutional level focus, a macro-level focus and a micro-level 

focus. The institutional level explains gender choice patterns as a result of education policies. 

The macro-level explains these patterns as a result of societal patterns. And the micro-level 

explains these patterns as the result of psychological constructs. Yazilitas and colleagues (2013) 

stress that these three foci are not operating within a vacuum but instead interact with each other.  

Gendered Choice Patterns at the Institutional Level 

   The effect of PE interest fit on STEM study choice may vary depending on educational 

policy of institutions or regions. For example, the present study is conducted in an open access 

and low cost higher education system, where anyone with a high school degree can enroll for 

almost any study program. Such a context provides a unique opportunity to assess the effect of 

PE interest fit on study choice without risk of unwanted bias from high stakes testing or GPA 

(grade point average) requirements. As a consequence, not only do students have to make a 

choice regarding a bachelor program (i.e., 39 programs in the present study), but students also 

need to make a choice of university or college (Fonteyne, 2017; Schelfhout, 2019). Such a 

stressful event can even induce a paradox of choice, as too much choice can have negative 

consequences (Schwartz, 2015). For example, Abbiss (2009) reported that more options actually 

reinforce gender stereotypes in an information and communication technology program. As such, 

a broad choice does not seem likely to drive female STEM study choice. However, such a 

stressful event also creates opportunities for female students. In a neurocognitive study, Preston 

                                                           
1 This early review did not consider Engineering as a separate academic field.  
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and colleagues (2007) examined decision-making of males and females in stressful situations. 

Results showed that females make better decisions, while also making better use of explicit 

knowledge. As such, a stressful study choice could lead to a better interest fit in female students 

as females make better decisions in stressful situations. However, we have to consider the macro- 

and micro-level of the framework to investigate which explicit knowledge female students use 

and how this knowledge can lead to better decisions (Yazilitas et al., 2013). 

Gendered Choice Patterns at the Macro-Level 

   Gendered choice patterns have also been attributed to social or cultural determinants. For 

instance, a large international study by Stoet and Geary (2018) shows that in developed, 

progressive and gender-aware countries the need to choose STEM education for instrumental 

reasons like job prospects and salary is smaller. As a consequence, women are more likely to 

choose non-STEM programs, effectively increasing the gender gap in these more gender-aware 

countries. This gender gap originates as early as primary school, and is strongly tied to STEM 

preparation (Bagiati et al.,  2010; Bybee, & Fuchs, 2006). Such early STEM preparation takes 

the form of exposure to science and mathematics and has a large positive impact on the pupil’s 

disposition towards STEM (Blackburn, 2017; Dejarnette, 2012). The gender gap from primary 

school is then further consolidated into secondary education. For instance, girls remain 

underrepresented in STEM preparing high school programs that focus on mathematics (Sadler et 

al., 2012; UNESCO, 2016). Wang (2013a; 2013b) also reports that such an exposure to 

mathematics in secondary education leads to an intent to major in academic STEM programs and 

thus predicts a choice for STEM in higher education. Because better high school performance is 

associated with more STEM study choice (Vaarmets, 2018), and because women outperform 

men in high school (Buchmann et al., 2008), one would expect that the minority of women that 
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are still represented in STEM preparing programs should have a higher chance of choosing 

STEM. However, Nix and colleagues (2015) report the opposite: female students in STEM 

preparing programs have a lower chance of choosing STEM. According to Nix and colleagues 

(2015), this discrepancy originates from the fact that women estimate their cognitive capabilities 

much more modestly. As such, explicit knowledge of STEM preparation has less impact on 

female STEM choice. STEM preparation is therefore not an answer to our question which 

explicit knowledge would lead to a better decision and a better PE interest fit in female students. 

Considering the importance of the effect of STEM preparation on STEM study choice, we have 

included STEM preparation in our analyses of the present study as a control variable.  

 Gendered Choice Patterns at the Micro-Level   

  Besides these macro – level environmental influences, making a study choice is an 

important life decision that also involves micro – level individual cognitive decision processes 

(e.g., What do I want to do in my future professional life?) (Fonteyne, 2017; Schelfhout, 2019). 

Social cognitive theory (SCT) is a theory on human behavior that considers both the influence of 

the social environment as well as the influence of individual cognition (Bandura, 2001; Lent, 

1994). According to SCT, human behavior can be explained through three psychological 

determinants: self-efficacy beliefs (i.e., can I do it?), outcome expectations (i.e., what will 

happen?) and goal representations (i.e., what will I gain?). Self-efficacy is regarded as the most 

important one, as it determines if an individual has sufficient self-belief to start a specific task to 

begin with (Stajkovic & Luthans, 1998a; Stajkovic & Luthans, 1998b). In social cognitive career 

theory (SCCT), self-efficacy is also considered an important precursor of the effect of vocational 

interests on STEM-study choice (Lent & Brown, 2019). For instance, in a series of studies on 

choice goals towards computing majors (a STEM choice), the total SCCT model explains about 
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40% of the variance in vocational interests, with self-efficacy forming the most important 

determinant (Lent et al., 2008; Lent et al., 2011). In their own right, vocational interests also had 

a significant influence on the goal of choosing a major in computing, alongside the direct effect 

of self-efficacy, social support and social barriers.  

  For the present study, student self-belief that a study choice is a good fit with personal 

vocational interests is a necessary condition to make an appropriate STEM study choice. Such a 

self-belief does assume that a student has sufficient explicit knowledge about his or her own 

interests and STEM study choice to begin with. To facilitate such knowledge, Germeijs and 

Verschueren (2006) validated a study choice task inventory (SCTI) based on existing instruments 

and newly introduced items. In an open access environment, the SCTI measured the orientation, 

exploration and commitment of 946 high school students towards study choice. Results indicated 

that girls scored higher on orientation (e.g., “I often think about what I will study”), exploratory 

behavior of environment (e.g., “I thoroughly read a brochure about these studies”), self-

exploratory behavior (e.g., “I have talked with my friends about my interests”) and commitment 

(e.g., “Are you uncertain about this study?” ). In sum, future female students seem to have more 

explicit knowledge about their interests and possible study choices, while also making more and 

better use of that explicit knowledge (Germeijs & Verschueren, 2006). As such, we consider that 

female students could ponder more explicitly over the question whether a STEM choice fits their 

personal interests. If a female student believes she has a good interest fit with the STEM field, 

chances are she will make more use of this explicit information compared to her male colleagues. 

As such, we hypothesize that 

  Hypothesis 2: The effect of STEM fit on STEM study choice is moderated by gender, with 

a stronger effect in female students. 
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  For the present study, study choice is more than just a choice for STEM or non-STEM. 

Students primarily have to make a choice for a specific topic, that is implemented in a specific 

study program (i.e., somewhat comparable to a major). As such, future STEM students can 

choose programs like chemistry and computer sciences, while future non-STEM students can 

choose programs like philosophy or law. Analogous to hypothesis 2, we again consider that 

female students could ponder more explicitly over the question whether the specific program 

choice fits their personal interests. If a female student believes she has a good interest fit with the 

specific STEM program, chances are she will make more use of this explicit information 

compared to her male colleagues. As such, we hypothesize that 

Hypothesis 3: Female STEM students have a better program fit with their program of 

choice compared to male students. 

Moreover, if a better program fit for female students is indeed the result of more explicit 

knowledge regarding their own interests and their program choice, this gender effect should also 

be found in non-STEM study programs in addition to STEM programs. To test this assumption, 

we will also investigate hypothesis 3 in the general student population, across all 39 (STEM and 

non-STEM) programs. The results of this test will allow us to answer our second research 

question whether and to which extent male and female students differ regarding PE interest fit 

with their specific STEM program. 

Method and Materials 

STEM Field, Stream and Approach 

  STEM does not have an unequivocal definition in literature. For the present study, we 

have thus operationalized STEM as defined by UNESCO. UNESCO defines the STEM concept 

through the perspectives of field, stream and approach (UNESCO, 2016). As a field, STEM 
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incorporates life sciences, physical sciences, technology, engineering and mathematics. As a 

stream, the STEM field enrolls students from secondary education into a program in higher 

education. Finally, as an approach, the STEM field aims at an application of the studied 

knowledge, skills and values to help solve problems in the real world.  

  The present study focuses on the first two elements of the UNESCO definition. First, we  

applied the field definition of STEM to the present data, effectively distinguishing a STEM study 

choice from a non-STEM one. Second, the STEM stream takes the form of student data gathered 

within the context of study orientation. The transition from high school to a higher education is 

indeed considered as a crucial timing to recruit future employees as students enroll for STEM 

oriented programs in higher education. 

Data and Procedure 

  We applied the UNESCO definition to student data collected within all faculties and all 

programs (STEM and non-STEM) of a Belgian university (Shanghai Top 100, which ranks the 

world’s top 1,500 universities and colleges based on objective measures). The data are part of the 

university’s longitudinal project for study orientation (Fonteyne, 2017; Schelfhout, 2019). This 

orientation project focuses on the transition of individuals from high school to higher education 

by guiding these future students towards appropriate study programs, based on their skills (i.e., 

which programs are obtainable?) and also their vocational interests (i.e., which programs are 

interesting to me?). Orientation for these students is needed, as they are enrolling in 

unconstrained, open access and low cost higher education, with nearly limitless options in 

programs to choose from. Indeed, barring the exceptions of Medicine, Dentistry or Performing 

Arts (music), all academic higher education programs are open to everyone with a high school 

degree. Moreover, the tuition fees do not exceed € 1,000 or about $ 1,150, and almost half of the 
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students receive funding through scholarships, based on economic (income-related) criteria. 

Also, the orientation instrument does not show bias towards social economic status or towards 

people with a different nationality (4% of the student population) or towards Belgians with a 

foreign origin (1% of the student population had at least two grandparents that were not Belgian) 

(Fonteyne, 2017). About 20% of all students did not want to disclose whether they had a foreign 

origin.  

  For the present dataset, it is important to point out that students starting the same study 

program have identical curricula, resulting in a highly comparable study choice. Moreover, once 

students have made their choice for a specific program, they cannot interchange elements of their 

curriculum in later years of the program. As an example, students do not have the possibility of 

“changing major” after a successful first or second year, as is more custom in British or 

American systems. A first year STEM study choice thus becomes highly predictive towards 

future employment in the STEM field. Taken together, the present study's educational setting 

allows for study of vocational interests without unwanted effects from high stakes testing, GPA 

requirements or financial attainability. 

  At the start of the academic years 2016-2017 and 2017-2018, two cohorts of newly 

enrolled students participated in this online study (September-October 2016 and 2017). 

Participation was not mandatory, but promoted through professors, email and the online learning 

platform used in all university programs. The student data from the programs Medicine and 

Dentistry were excluded from the present study as students had to pass an exam to enroll for the 

program and thus formed the only exception regarding open access study context. The overall 

response rate was 68% (N = 9,162, 60% female), with 3,389 students choosing a program in the 

STEM field.  



INTEREST FIT AND STEM STUDY CHOICE   16 

 

  We also assessed the interest profiles of 39 study programs (see also Figure 1), using the 

interest RIASEC profiles of former successful and persistent senior students, who indicated they 

would enroll again for the same program when given the opportunity (N0 = 6,572). These senior 

students met the conditions of perseverance and academic success and the procedure of 

establishing the program profiles was identical to the procedure used by Allen and Robbins 

(2010). For each program, the RIASEC scores of all students were averaged for each dimension, 

resulting in a RIASEC profile for each program. 

Measures  

STEM or non-STEM Study Choice  

  UNESCO operationalizes the STEM field as a field that incorporates life sciences, 

physical sciences, technology, engineering and mathematics (UNESCO, 2016). Importantly, this 

UNESCO operationalization does not include social sciences, in contrast to some studies (Su & 

Rounds, 2015). As such, all 39 programs are divided into STEM and non-STEM programs based 

on the UNESCO definition (UNESCO, 2016) so that students in a (non-) STEM program are 

considered to have made a (non-) STEM study choice. Figure 1 shows a scatterplot of all 

program profiles, by representing each profile as a single point in Euclidean two-dimensional 

space. We proceed by defining the general STEM field profile by averaging interest dimension 

scores across all STEM programs to correct for student numbers in the programs. This 

calculation results in a STEM field RIASEC profile with the following dimension scores, R = 

31.88, I = 46.25, A = 28.99, S = 24.54, E = 26.32 and C = 21.15. Figure 1 shows that programs 

categorized as STEM according to the UNESCO definition are centered alongside a regression 

line, in the things/data quadrant. Figure 1 also shows that the social sciences are distanced from 

this cluster, warranting their exclusion from the STEM field. Figure 1 thus provides empirical 
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support for our UNESCO operationalization of the STEM field.  

Vocational Interest  

  We used the SIMON-I questionnaire to obtain vocational interest scores on the six 

RIASEC dimensions (see Appendix A; Fonteyne, Wille et al., 2017). The RIASEC dimension 

scales showed a reliability (Cronbach’s α) of .92, .88, .92, .92, .93 and .90 respectively. To test 

the assumed circular structure of the RIASEC dimensions, we first performed a confirmatory 

factor analysis (CFA), using the CirCe package in R (Browne, 1992; Grassi et al., 2010). The 

analysis confirmed the circular structure (SRMR = 0.05, NFI = 0.97, CFI = 0.97, GFI = 0.99) 

and the parsimony (Schwarz’s Bayesian Criterion of 0.03) of the RIASEC dimensions. Second, 

we also performed a randomization test of hypothesized order relations (RTOR) using the 

RANDALL package to confirm the circular structure and order of the RIASEC dimensions 

(Tracey, 1997). Results of this RTOR analysis revealed a correspondence index of CI = .92, p = 

.02, indicating an excellent fit. Both CFA and RTOR analysis thus support the circular structure 

of the RIASEC data.  

STEM Fit and Program Fit 

   STEM fit indicates the PE interest fit between a student (i.e., individual RIASEC profile) 

and the general STEM field (i.e., STEM field RIASEC profile) and is measured in Euclidean 

distance. Program fit indicates the PE interest fit between a student and her/his specific program 

(i.e., RIASEC program profile) and is also measured in Euclidean distance. We calculated 

Euclidean distance as described in the introduction (Wille et al., 2014). 

 STEM Preparation  

  Wang (2013a; 2013b) already reported that exposure to mathematics predicts the choice 

of a STEM program in higher education and thus prepares students for the STEM field. As such, 
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for the present study, we have operationalized STEM preparation as weekly hours of high school 

mathematics prior to higher education enrolment. This variable has already been used for various 

other purposes in literature. For instance, several open access studies have found that weekly 

hours of mathematics in high school also predicts higher education study success (Fonteyne, 

Duyck, et al., 2017; Pinxten et al., 2017).  

Analyses   

  To test hypotheses 1 and 2 (H1 and H2 respectively), we constructed a STEM study 

choice model, which is a logistic regression of STEM study choice on the main effects and 

gender interactions of STEM preparation, PE interest fit and all six individual RIASEC interest 

dimensions. Though the logistic model is tailored towards STEM study choice, the model also 

represents a non-STEM study choice as the outcome is binary (i.e., 1 or 0). As STEM is the 

focus of this study, we formulated the results in terms of STEM study choice. The model was 

built in two stages by first adding all main effects, followed by all gender interactions. Individual 

RIASEC dimension effects and their interactive effects with gender were included as control 

variables in this analysis in order to obtain a conservative and more precise estimate of the PE 

interest fit effect. As our distinctive model has to deal with a fairly large number of predictors, 

we used Akaike’s Information Criterion (AIC) in a stepwise selection procedure to select the best 

fitting model, distinguishing students that chose STEM from those that chose another (non-

STEM) program. For a full discussion on the AIC method, we refer to Burnham and Anderson 

(2002). From a set of all possible models with all possible predictors, the stepwise procedure 

selected the best fitting one with the lowest AIC. This procedure rewards models with the least 

chance of information loss, but penalizes models that use too many predictors. The AIC stepwise 

methodology has a number of advantages over classic stepwise regression. AIC does not use 
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statistical testing as a criterion for model selection and does not depend on when variables enter 

the equation as all possible models are considered. Through a leave-one-out, prediction-focused 

mechanism, this methodology also benefits from cross-validation. Cross-validation allows us to 

make validated predictions on cross-sectional data, by splitting datasets into independent training 

data and test data. After selecting the best fitting model, we performed a logistic regression with 

STEM study choice as dependent variable and the variables from the selected model as 

predictors. We also reported two additional measures of pseudo - explained variance (deviance) 

concerning the individual main effects to estimate their specific contribution towards STEM 

study choice prediction and as control variables for the effects of interest fit. First, individual 

explained variance indicates how much variance the predictor explains if there are no other 

predictors present in the model. Second, unique explained variance indicates how much 

explained variance is lost if the predictor is removed from the model. To conclude, we 

constructed a ROC curve (receiver operating characteristic curve) indicating how well our model 

succeeds in profiling STEM students and distinguishing them from their non-STEM colleagues. 

A ROC curve balances sensitivity and specificity. Sensitivity indicates the proportion of STEM 

students that were actually classified as STEM students by our STEM choice model, while 

specificity indicates the non-STEM students that were indeed classified as non-STEM students. 

A rising sensitivity results in a falling specificity and vice versa. Finally, the Area Under the 

Curve (AUC) indicates how well the model can make the distinction between STEM and non-

STEM students. An AUC of 1 indicates perfect accuracy (i.e., a full distinction between STEM 

and non-STEM choice), while an AUC of .5 indicates a model that cannot make the distinction 

above chance level. As a rule of thumb, Hosmer and Lemeshow (2000) suggest that AUC 

coefficients of  0.70 to 0.80 are acceptable, 0.80 to 0.90 are excellent and 0.9 or above are 
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outstanding. For a full discussion on AUC, we refer to Fawcett (2006).  

  To test Hypothesis 3 (H3), we used a Welch two-sample, two-tailed t-test. Effect sizes are 

calculated using a Cohen’s d (Sawilowsky, 2009) and a relative percentage (relative d). Cohen’s 

d effect size indications are interpreted as follows: 0.01 – very small effect, 0.20 – small effect, 

0.50 – medium effect, 0.80 – large effect, 1.20 – very large effect, 2.00 – huge effect 

(Sawilowski, 2009). The relative d percentage is calculated through dividing the highest value by 

the lowest value, subtracting 1 from that result and then multiplying by 100. Negative effect 

sizes indicate a higher value for female students. H3 is tested in both the STEM population and 

the general student population. Apart from this hypothesis, we also analyzed the gender 

differences in all RIASEC dimensions and STEM preparation to be able to integrate our findings 

into literature. 

Results 

Preliminary Analyses  

  Table 1 shows the proportions of male and female students in the total population, the 

population of STEM students, and the population of non-STEM students. The chi-squared test on 

these proportions was significant, χ² (1) = 405.62, p < .001, rejecting the null hypothesis and 

indicating male overrepresentation in STEM study fields. Indeed, 54% of all STEM students was 

male, with only 29% of the female students making a STEM choice, compared to 51% of the 

male students.  

  Tables 2 (STEM student population) and 3 (general student population) report the 

descriptive statistics and the gender differences for the RIASEC interest scores and STEM 

preparation. Female students show higher social and artistic interests, while male students show 

higher realistic, enterprising and conventional interests. Female students also show lower 
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investigative interests in the general population, but higher investigative interests in the STEM 

population. Finally, Tables 2 and 3 also show that female students have a less thorough STEM 

preparation in secondary education. 

  We performed a logistic regression on the final STEM study choice model after the AIC 

procedure to estimate the main and interactive effects of the remaining predictors. Note that 

adding the main effect of gender to the regression rendered a positive effect for female students 

towards STEM study choice ( β = .78, p < .001), in contrast to the main negative effect of gender 

on STEM study choice without any other predictors present (β = -.53, p < .001). Three gender-

interest interactions (student gender × realistic dimension, student gender × artistic dimension 

and student gender × enterprising dimension) were removed by the AIC stepwise regression as 

they did not add to the prediction of STEM study choice. The student gender main effect does 

not reach significance any more (p = .15), indicating that the gender effect in making a STEM 

study choice is fully explained through the included interaction effects of gender. This null result 

also indicates that all relevant gender interactions have been added to the regression, providing a 

conservative control for the effects present. 

  As the validity of the hypothesis testing is highly dependent on the ability of our STEM 

study choice model to distinguish STEM and non-STEM students, we plotted the balance 

between sensitivity and specificity of the model on a ROC curve in Figure 2. Our STEM study 

choice model manages to correctly identify 87% of the students that indeed chose a STEM 

program (sensitivity), while it also manages to correctly identify 87% of the students that chose a 

non-STEM program (specificity). Finally, analyses also revealed an AUC of .94 with an 

asymptotic 95% CI of [.938, .947], indicating an outstanding fit. 

Hypothesis Testing   
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  H1 stated that STEM fit predicts STEM study choice. The final STEM study choice 

model in Table 4 shows that STEM fit indeed has a significant effect on STEM study choice, 

even when controlling for the significant effects of gender, STEM preparation and the individual 

RIASEC dimensions. As an indication of effect size, Table 5 shows that STEM fit has a high 

individual explained variance, second to STEM preparation only. STEM fit also shows a minor 

unique explained variance. As STEM fit is a composite measure including all RIASEC 

dimensions, the unique explained variance thus indicates that STEM fit still has incremental 

validity above and beyond the effects of individual RIASEC dimensions. 

  H2 stated that the effect of STEM fit on STEM study choice is moderated by gender, with 

a stronger effect in female students. Table 4 shows a significant negative parameter estimate for 

the interaction between STEM fit and gender, while controlling for all other gender interactions. 

In other words, a better STEM fit will lead to a higher chance for a STEM study choice in female 

students. Table 4 further shows that female STEM choice is also less determined by STEM 

preparation, while showing an even more pronounced positive effect of higher investigative 

interests and a less negative effect of higher social and conventional interests.   

  H3 stated that female STEM students have a better program fit with their program of 

choice compared to male students. As such, we tested the difference in specific program fit 

between male students (M = 85.95, SD = 49.54) and female students (M = 79.88, SD = 50.91) in 

the STEM population. The result showed a significant effect, t (3387) = 3.51, p < .001, Cohen’s 

d = 0.12, relative d = 8%. Female students indeed showed a better fit with their STEM program 

compared to male students. To explore if this gender effect generalized to non-STEM programs, 

we also tested the difference in program fit between male students (M = 90.37, SD = 49.09) and 

female students (M = 82.00, SD = 47.54) in the full dataset (STEM and non-STEM programs). 
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The result again showed a significantly better program fit for females, t (7786.83) = 8.12, p < 

.001, Cohen’s d = 0.17, relative d = 10%. 

Discussion 

  Industrialized regions around the globe have experienced increasing difficulty to fill 

STEM vacancies due to a decline in students who actively enroll for a STEM program in higher 

education (Ainley et al., 2008; Perera & McIlveen, 2018). Also, there seems to exist a widening 

gender gap, indicating that women are becoming even more underrepresented in the STEM field 

(UNESCO, 2016; Xu, 2008). To ensure a steady stream of (female) students into higher 

education, literature benefits from identifying determinants of STEM study choice, so that 

education policy and counseling can act upon this knowledge to attract more (female) students. 

In this context, the present study focused on two research goals. First, we investigated how PE 

interest fit contributes to the prediction of STEM study choice, with particular consideration 

towards gender interaction effects. And second, we also investigated whether and to which 

extent male and female students differed regarding PE interest fit with their specific STEM 

program. To integrate our findings into literature, we again make use of the leveled framework 

of differential gender patterns in STEM study choice by Yazilitas and colleagues (2013). 

Findings and Theoretical Implications 

  Regarding our first research question, the present study found that PE interest fit indeed 

predicted a STEM study choice as STEM students had a better PE interest fit with the STEM 

field compared to non-STEM students. This effect of PE interest fit is quite robust as the effect is 

found while controlling for the six individual RIASEC dimensions and STEM preparation. In 

addition, a STEM student also showed higher realistic and investigative interests and lower 

artistic, social, enterprising and conventional interests. Finally, a STEM student also enjoyed a 
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more thorough STEM preparation in high school. These findings are commonly observed in 

literature. First, interest fit is already known to predict study choice (Schelfhout et al., 2019). 

Second, literature already shows that a student choosing STEM has a high realistic and 

investigative interest (Su et al., 2009; Su & Rounds, 2015). And finally, literature also shows that 

a student choosing STEM has had a more thorough STEM preparation, especially through an 

extensive exposure to mathematics and science (Bagiati et al.,  2010; Blackburn, 2017; Bybee, & 

Fuchs, 2006; Dejarnette, 2012; Wang, 2013a; Wang, 2013b).   

  Also regarding our first research question, the present study found that this predictive 

effect of interest fit on STEM study choice was stronger in female students, again while 

controlling for other possible gender interaction effects. In addition, STEM study choice in 

female students showed a more pronounced positive effect of high investigative interests and a 

less negative effect of high social and conventional interests compared to male students. These 

results are in line with S(C)CT and self-efficacy theory at the micro-level of psychological 

constructs (Bandura, 2001; Lent, 1994; Lent & Brown, 2019; Lent et al., 2008; Lent et al., 2011; 

Stajkovic & Luthans, 1998a; Stajkovic & Luthans, 1998b). According to these theories, student 

self-belief that a study choice is a good fit with personal vocational interests is a necessary 

condition to make an appropriate STEM study choice. Such a self-belief assumes that a student 

has sufficient explicit knowledge about his or her own interests and the STEM field to begin 

with. Literature already shows that female students thus seem to make more and better use of 

explicit knowledge about their vocational interests and how these interests fit their study choice 

(Germeijs & Verschueren, 2006; Preston et al., 2007). As the present study shows, female 

students with a good STEM fit should therefore also have an even higher chance of ultimately 

choosing a STEM program as female students explicitly use more interest information in their 
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study choice process.  

  As an answer to our second research question, this stronger female interest fit effect 

manifests itself also at the more specific program level. Indeed, female STEM students had an 

8% better fit with their specific program compared to their male colleagues. Moreover, this effect 

was also present in the general student population, where female students demonstrated a 10% 

better interest fit with their specific programs compared to their male colleagues. The present 

study thus suggests that this gender difference in PE interest fit is not unique to the STEM 

environment, as it generalizes across all study programs. This generalization further corroborates 

the reports in literature that female students make more and better use of explicit knowledge like 

vocational interests in the process of study choice (Germeijs & Verschueren, 2006; Preston et al., 

2007).  

  Previous to the present study, literature primarily determined a good STEM field fit by 

looking at RIASEC profiles within the STEM field (Perera & McIlveen, 2018; Su & Rounds, 

2015; Su et al., 2009). In the present study we have added to literature by determining how an 

individual’s vocational interests can explain making a STEM choice over a non-STEM choice. 

For this purpose, study programs were marked as either a STEM choice or a non-STEM choice 

using the UNESCO (2016) definition. Interestingly, the mapping of all study programs in two-

dimensional interest space clearly showed an empirical difference in orientation between STEM 

programs and non-STEM programs, with STEM programs all showing a things/data quadrant 

orientation. When predicting STEM study choice specifically, the constructed model further 

integrated the main and gender interaction effects of the individual RIASEC dimensions, STEM 

fit and STEM preparation. The model performed adequately, by explaining up to 71% of the 

variance in (non-) STEM study choice. Only 5% of the variance was uniquely explained by 
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specific STEM preparation (i.e., mathematics). These findings indicate that STEM study choice 

can be largely understood through a vocational interests perspective, without inclusion of 

cognitive variables. The model also succeeded in profiling STEM and non-STEM students by 

correctly identifying their (non-) STEM study choice in 87% of all cases. These numbers are on 

the very high end when compared to known (vocational) literature on study choice (Burns, 2014; 

Donnay, 1997; Päßler & Hell, 2012). Moreover, the model seemed quite robust against 

information loss. Indeed, all predictors had low unique explained variance, ranging from about 1 

to 5%. As such, little information is lost when a single predictor is removed. Also important, a 

STEM study choice is predicted by both strong interests (i.e., realistic and investigative 

dimensions) as well as the relative absence of interests (i.e., artistic, social, enterprising and 

conventional dimensions). These findings are in line with Holland’s theory, as Holland himself 

always advocated the use of the full profile (Holland, 1997). 

  At the societal macro-level, we have replicated the result that a STEM study choice in 

female students is less determined by STEM preparation (Buchmann, 2008; Nix et al., 2015, 

Vaarmets, 2018; Wang, 2013a; Wang, 2013b). As a plausible explanation and in line with 

literature, we suspect that this gender interaction is an emanation of a societal effect, installed as 

early as childhood (Bagiati et al.,  2010; Blackburn, 2017; Bybee, & Fuchs, 2006; Dejarnette, 

2012) and endorsed up until the end of secondary education (Nix et al., 2015; Sadler et al., 2012; 

UNESCO, 2016). Indeed, the present study indicated that the minority of female students who 

still benefit from a thorough STEM preparation at the end of secondary education, seem less 

inclined to choose a STEM study program in higher education than their male colleagues. 

  At the institutional level, we thus observe a STEM gender gap in our data, characterized 

by a male overrepresentation. Only a minority of female students made a STEM study choice 
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(29%), in contrast to about half of the male students. Gender explained up to 6% of student  

(non-) STEM choice. As a result, the STEM study field consisted of 46% female students. 

However, our study did include 60% female students to begin with, somewhat creating a more 

balanced population composition compared to literature (UNESCO, 2016; Xu, 2008). Taken 

together, the relatively small proportion of female students choosing STEM seems to be in line 

with the results from the broader STEM gender gap presented by Stoet and Geary (2018) for 

developed, progressive and gender-aware countries. As a possible explanation, our open access 

higher education environment in a developed, progressive and gender-aware country invites 

students to choose according to their interests. This explanation is endorsed by the good fit of our 

STEM study choice model, as vocational interests can explain about two-thirds of the variance in 

STEM study choice for both male and female students, with only a very minor incremental 

gender-specific effect of about 1%. 

Practical Implications  

  In higher education, a good interest fit predicts study success and persistence (Burns, 

2014; Donnay, 1997; Päßler & Hell, 2012; Nye et al., 2012; Rounds & Su, 2014; Schelfhout et 

al., 2021; Schelfhout et al., 2019). In other words, students that fit their study choice have a 

higher chance of graduating. As interests are stable constructs (Low et al., 2005), graduated 

STEM students that have a good fit with the STEM field should have a greater chance to stay in 

the STEM field for longer periods of time. However, more research is needed to explore this 

assumption. For instance, longitudinal research should investigate how a good PE interest fit 

with the STEM field in higher education affects important variables like performance and 

retention in future STEM work careers. Such longitudinal research should also take special care 

towards female workers as the determinants of persistence and performance could be different 
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for male and female STEM workers, somewhat similar to higher education STEM study choice 

(Yazilitas et al., 2013).  

  Interest fit and STEM preparation are also related to other important predictors of (study) 

choice such as self-efficacy (Bandura, 2001; Germeijs & Verschueren, 2006; Lent & Brown, 

2019). Orientation efforts and research could therefore be directed at further enhancing female 

awareness of STEM interests and strengthening female self-belief in STEM talent from as early 

as primary school (Bagiati et al.,  2010; Blackburn, 2017; Bybee, & Fuchs, 2006; Dejarnette, 

2012). These efforts of boosting self-efficacy beliefs regarding vocational interests and STEM 

talent should be continued, monitored and stimulated throughout high school (Buchmann, 2008; 

Nix et al., 2015, Vaarmets, 2018; Wang, 2013a; Wang, 2013b). Towards higher education 

specifically, education policy can facilitate an active search for female students with an overall 

STEM fitting interest profile. Study counseling can also make these students explicitly aware of 

their own interests and the program specific possibilities towards a STEM career. Especially for 

female students, study orientation focusing on interest fit with the STEM field can widen the 

pipeline towards the STEM work field. The benefit from this more consistent work force influx 

can prove important to the economy of industrialized countries (World Economic Forum, 2016).  

Limitations  

  There are two limitations to our study that have to be acknowledged. First, we 

acknowledge the cross-sectional nature of the present study’s data on first year students. Data 

with a cross-sectional nature are usually less optimal to investigate research questions that touch 

upon prediction of future behavior like study choice as causality becomes harder to infer. As 

interests are stable constructs (Low et al., 2005) and literature already presents strong evidence 

regarding the predictive properties of vocational interests towards study choice (Fonteyne, 2017; 
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Nauta, 2010; Nye et al., 2012), we do not consider the use of cross-sectional data a threat to the 

validity of the present study’s results. Strictly speaking however, predicting study choice in a 

regression still does not coincide with predicting study choice in actual behavior if both 

predictors as well as the criterion are questioned at roughly the same time. We therefore opted to 

use a second, independent data set of former successful and persistent students to construct the 

program RIASEC profiles by using these former students as incumbents (Allen & Robbins, 

2010; Schelfhout et al., 2019; Schelfhout et al., 2021). For the present study, student PE interest 

fit is therefore determined by comparing the data of incoming students to the data of former 

senior students. As these datasets were obtained independently of each other at different times, 

the interest profiles of former successful students within and beyond the STEM field predict 

which profiles the incoming students will exhibit as similar environments attract similar students 

(Schelfhout et al., 2019). The results of the present study again confirmed this effect as incoming 

STEM students had a better fit with the STEM field (i.e., more similarity to former STEM 

students) than incoming non-STEM students. Additionally, the present study was also conducted 

on quite a large data sample, across all faculties and programs of a large university (Shanghai top 

100), thus covering a wide range of (non-) STEM study topics. The use of 39 largely 

independent subsamples (i.e., study programs) with different student populations can further 

overcome the limitations of a cross-sectional design towards prediction, especially because the 

AIC procedure uses a built-in, leave-one-out cross-validation mechanism. Such a mechanism 

allows us to make predictions on cross-sectional data by splitting the data into independent 

training and test samples. The already discussed robustness of our STEM prediction model 

further corroborates the validity of this methodology.  

  Second, we also acknowledge the uniqueness of Belgian open access higher education 
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compared to the more closed access education systems elsewhere in the world. However, such an 

open access context with less options for customization (e.g., changing majors is not possible) 

does allow assessing the effects of vocational interests without additional constraints that are 

imposed in systems that use high stakes tests or entrance requirements. Future research therefore 

has to investigate if the effects found in the present study can be replicated in other educational 

systems, with more restricted access.     

Conclusion  

   A student making a STEM choice in an open access study environment has a good 

interest fit with the STEM field, has a specific RIASEC profile (i.e., with higher realistic and 

investigative interest and lower artistic, social, enterprising and conventional interests) and has 

enjoyed a more thorough STEM preparation in high school. For female students specifically, the 

effect of this good PE interest fit is even more pronounced, while the effect of STEM preparation 

diminishes. Female STEM choice also shows more pronounced positive effects of investigative 

interests and less negative effects of high social and conventional interests. Finally, following a 

(non-) STEM choice, female students fit their specific (STEM) study program better than their 

male colleagues. In order to promote STEM enrolment and address the gender gap, education 

policy can facilitate the search for female students with an overall STEM fitting interest profile. 

Study counseling can make these students explicitly aware of their own interests and the 

(program specific) possibilities towards a STEM career.    
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Tables 

Table 1 

 Student Gender and STEM Choice Cross-Tabulation  

  

STEM choice total 

  

0 1 

 
Males Nm 1,879 1,828 3,707 

 

% within student gender 51 49 100 

 

% within STEM choice 33 54 40 

Females Nf 3,894 1,561 5,455 

 

% within student gender 71 29 100 

 

% within STEM choice 67 46 60 

Total N 5,773 3,389 9,162 

 

Note. STEM = Science, Technology, Engineering, Mathematics. 0 = non-STEM choice, 1 = 

STEM choice.  
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Table 2 

Student Gender Differences in the STEM Student Population 

Student interests and 

STEM preparation 
n M Mm Mf SD Cohen’s d Relative d 

Realistic dimension 3,389 33.79 45.94 19.56 26.96 1.13 135% 

Investigative dimension 3,389 44.88 41.94 48.33 20.96 -0.31 -15% 

Artistic dimension 3,389 23.38 20.46 26.80 22.52 -0.28 -24% 

Social dimension 3,389 22.67 15.21 31.40 21.50 -0.80 -106% 

Enterprising dimension 3,389 23.32 25.95 20.23 22.47 0.26 28% 

Conventional dimension 3,389 17.49 18.49 16.32 19.24 0.11 13% 

STEM preparation 3,377 6.11 6.42 5.75 1.51 0.45 12% 

 

Note. STEM = Science, Technology, Engineering, Mathematics. Mm = male student average and 

Mf = female student average. STEM preparation was operationalized through the hours of 

mathematics students chose in the final two years of high school up to a maximum of eight. The 

RIASEC dimensions were measured on a scale from 1 to 100. Cohen’s d effect size rules of 

thumb (Sawilowski, 2009): 0.01 – very small effect, 0.20 – small effect, 0.50 – medium effect, 

0.80 – large effect, 1.20 – very large effect, 2.00 – huge effect. The relative d percentage is 

calculated through dividing the highest value by the lowest value, subtracting 1 from that result 

and then multiplying by 100. Negative effect sizes indicate a higher value for female students. 

All gender differences were significant at the level p < .001.  
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Table 3 

Student Gender Differences in the General Student Population 

Student interests and  

STEM preparation 
N M Mm Mf SD Cohen’s d Relative d 

Realistic dimension 9,162 18.86 32.00 9.93 23.61 1.00 222% 

Investigative dimension 9,162 33.5 34.48 32.83 21.29 0.08 5% 

Artistic dimension 9,162 29.95 24.62 33.57 25.59 -0.36 -36% 

Social dimension 9,162 34.93 22.7 43.23 25.9 -0.88 -90% 

Enterprising dimension 9,162 33.45 37.23 30.87 28.17 0.23 21% 

Conventional dimension 9,162 21.08 25.08 18.36 22.86 0.29 37% 

STEM preparation 9,135 4.95 5.41 4.59 2.88 0.47 18% 

 

Note. STEM = Science, Technology, Engineering, Mathematics. Mm = male student average and 

Mf = female student average. STEM preparation was operationalized through the hours of 

mathematics students chose in the final two years of high school up to a maximum of eight. The 

RIASEC dimensions were measured on a scale from 1 to 100. Cohen’s d effect size rules of 

thumb (Sawilowski, 2009): 0.01 – very small effect, 0.20 – small effect, 0.50 – medium effect, 

0.80 – large effect, 1.20 – very large effect, 2.00 – huge effect. A negative effect size indicates 

higher female student scores. The relative d percentage is calculated through dividing the highest 

value by the lowest value, subtracting 1 from that result and then multiplying by 100. Negative 

effect sizes indicate a higher value for female students. All gender differences were significant at 

the level p < .001.  
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Table 4  

STEM Study Choice Model: Coefficients 

 
 

Coefficients Estimate z-statistic 

(Intercept) -3.13 -13.38*** 

Student gender 0.44 1.43 

STEM fit -0.0068 -5.65*** 

STEM preparation 0.59 16.78*** 

Realistic dimension 0.049 22.39*** 

Investigative dimension 0.039 12.70*** 

Artistic dimension -0.014 -7.60*** 

Social dimension -0.038 -11.26*** 

Enterprising dimension -0.013 -6.13*** 

Conventional dimension -0.028 -8.09*** 

Student gender × STEM fit -0.0053 -3.19** 

Student gender × STEM preparation -0.14 -3.71** 

Student gender × Investigative dimension 0.022 5.28*** 

Student gender × Social dimension 0.015 3.29** 

Student gender × Conventional dimension 0.021 5.03*** 

 

Note. STEM = Science, Technology, Engineering, Mathematics. The table displays the final 

model estimate of the logistic regression of STEM study choice (1 = STEM, 0 = non-STEM) on 

the six RIASEC dimensions of vocational interests, STEM preparation (weekly hours of 

mathematics in high school) and STEM (interest) fit, with addition of all relevant gender 
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interactions. Student gender is coded 1 for female students and 0 for male students. The model 

explains about 71% of the (pseudo-) variance through a Nagelkerke’s R².  Note that the sign of 

the parameter estimate for STEM fit is negative. This negative estimate is due to the nature of 

Euclidean distance in which a lower score indicates a better fit.  *p < .05, **p < .01, ***p < .001.

   



INTEREST FIT AND STEM STUDY CHOICE   45 

 

Table 5 

STEM Study Choice Model: Individual and Unique Explained Variance  

Predictors Individual explained variance Unique explained variance 

Student gender 0.06 0.01 

STEM fit 0.32 0.01 

STEM preparation 0.34 0.05 

Realistic dimension 0.30 0.05 

Investigative dimension 0.22 0.05 

Artistic dimension 0.05 0.01 

Social dimension 0.19 0.02 

Enterprising dimension 0.11 < 0.01 

Conventional dimension 0.02 < 0.01 

 

Note. STEM = Science, Technology, Engineering, Mathematics. The table displays the explained 

pseudo – variance (deviance) for each predictor of the logistic regression of STEM study choice 

(1 = STEM, 0 = non-STEM) on the six RIASEC dimensions of vocational interests, STEM 

preparation, STEM (interest) fit and gender. Individual explained variance indicates how much 

variance the predictor explains if there are no other predictors present in the model. Unique 

explained variance indicates how much explained variance is lost if the predictor is removed 

from the model. Individual and unique explained variance were measured using a Nagelkerke’s 

R². All predictors have a somewhat low and thus similar unique explained variance. This result 

indicates that the model is quite robust. Indeed, information loss remains limited when removing 

one predictor from the model. In contrast, the individual explained variance over all predictors 

shows a much wider range. Important to note, the variance measures for gender provide an 
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additional indication of the effect of student gender on STEM study choice. About one to six 

percent of STEM study choice can be explained through student gender (without gender 

interactions), while controlling for the other predictors. 
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Figures 

Figure 1. Scatterplot of 39 Programs using the People / Things (X-axis) and Data / Ideas (Y-

axis) Dimensions. 

 

 

Note. The programs included are (in random order): 1 = Psychology (0), 2 = Communication 

Sciences (0), 3 = Mathematics (1), 4 = Educational Sciences (0), 5 = Political Sciences (0), 6 = 

Law (0), 7 = Sociology (0), 8 = Criminological Sciences (0), 9 = Speech Language and Hearing 

Sciences (0), 10 = Physical Education and Movement Sciences (0), 11 = Philosophy (0), 12 = 

Linguistics and Literature (0), 13 = East European Languages and Cultures (0), 14 = History (0), 

15 = Oriental Languages and Cultures (0), 16 = Moral Sciences (0), 17 = Art History (0), 18 = 

Archaeology (0), 19 = African Studies (0), 20 = Veterinary Medicine (0), 21 = Physical Therapy 

and Motor Rehabilitation (0), 22 = Pharmaceutical Sciences (0), 23 = Bioscience Engineering 

(1), 24 = Economics (0), 25 = Biomedical Sciences (1), 26 = Engineering – Architecture (1), 27 
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= Engineering (1), 28 = Business Economics (0), 29 = Bioscience Engineering Technology (1), 

30 = Engineering Technology (1), 31 = Applied Language Studies (0), 32 = Biochemistry and 

Biotechnology (1), 33 = Biology (1), 34 = Chemistry (1), 35 = Physics and Astronomy (1), 36 = 

Geology (1), 37 = Geography and Geomatics (1), 38 = Computer Sciences (1), 39 = Public 

Administration and Management (0). All STEM programs are located in the right lower corner 

(things/data quadrant). The reference line, 𝑦 = 0.53𝑥 − 62.20, indicates the relation between the 

P/T and D/I coordinates of the STEM programs, with an explained variance of 31%.  
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Figure 2. The ROC Curve of STEM Study Choice versus non-STEM Study Choice. 

 

 

 

Note. Sensitivity indicates the proportion of STEM students that were actually classified as 

STEM students by our STEM choice model. Specificity indicates the non-STEM students that 

were indeed classified as non-STEM students. A rising sensitivity results in a falling specificity 

and vice versa. The blue ROC curve delineates the Area Under the Curve (AUC = .94) and 

indicates how well the model distinguishes STEM and non-STEM students. The reference line is 

indicated in red and represents the 50% chance level benchmark of distinction. 

 


